

Spring 2026 WEEK 2 STUDY GUIDE

The Big Picture

We continue to develop the basic toolkit: how to work with collections of random variables and collections of events. This gives us the tools to study some fundamentally important families of distributions.

- If events have a complicated dependence structure, you might not be able to calculate exact or even approximate chances. Sometimes the best you can do is find *bounds* for a chance.
- *Symmetry* in random permutations and simple random samples greatly simplifies calculations.
- There is a formula for the exact chance of the union of overlapping events, with a famous application.
- Distributions on a large finite number of values can be approximated by distributions on infinitely many values; a fundamentally important example of this is introduced.
- Random samples often result in random counts. The distribution of the count depends on the method of sampling.
- If the sample is a fixed number of i.i.d. success/failure trials, the distribution of the number of successes is *binomial*. The shape of the distribution can be understood by using consecutive odds ratios.
- In some situations, the binomial distribution is well approximated by a *Poisson* distribution, introduced earlier.

Week At a Glance

Mon 1/26	Tue 1/27	Wed 1/28	Thu 1/29	Fri 1/30
	Lecture	Sections	Lecture	Mega sections
Lab 1 Due 5 PM Lab 2 (Due Mon 2/2)			Lab 2 Party 3-5 PM in Warren 101B	
HW 1 Due 5 PM HW 2 (Due Mon 2/2)				Homework 2 Party 2-5 PM in Evans 330 & Evans 340
Finish working through Ch 4; Skim Ch 5	Work through Ch 5	Finish working through Ch 5; skim Ch 6	Work through Ch 6	Fill any holes you left in working through Ch 4-6

Reading, Practice, and Class Meetings

Book	Topic	Lectures: Prof A	Sections: TAs	Optional Additional Practice
Ch 5	<ul style="list-style-type: none"> - 5.1: Simple bounds for chances of unions and intersections - 5.2: The exact chance of a union, overlapping or not (requires the chances of all the overlaps) - 5.3: One of the most famous applications of inclusion-exclusion is to <i>fixed points</i> of a <i>random permutation</i>, also known as <i>matches</i>; this can be approximated by a distribution on infinitely many values - 5.4: Summary of results on symmetry in random permutations and simple random sampling 	<p>Tue 1/27</p> <p>Highlights of Ch 5</p>	<p>Wed 1/28</p> <ul style="list-style-type: none"> - Lab 2 Part 1: a new look at the TVD - Chapter 5 Ex 9, 12; also 1 if there is time 	<p>Chapter 5 1, 5, 6, 10, 13</p>
Ch 6	<ul style="list-style-type: none"> - 6.1: In a fixed number of i.i.d. 0/1 trials, the number of successes has a <i>binomial</i> distribution - 6.2: Examples you should read - 6.3 extends the binomial to the <i>multinomial</i> case where each trial has several possible outcomes - 6.4 compares the number of successes when the sampling is with replacement (binomial) and when the sampling without replacement (<i>hypergeometric</i>) - 6.5 uses odds ratios to study the shape of binomial histograms, and finds the mode - 6.6 uses odds ratios to show that under some conditions the binomial has a <i>Poisson</i> limit 	<p>Thu 1/29</p> <p>Highlights of Ch 6</p>	<p>Fri 1/30</p> <ul style="list-style-type: none"> - Ch 6 Ex 2, 4, 10, 11 	<p>Chapter 6 1, 5, 9, 12</p>