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name and parameters values mass function or density cdf F or survival function expectation variance mgf M(t)
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• The kth order statistic U(k) is kth smallest of U1,U2, . . . ,Un

i.i.d. uniform (0, 1), so U(1) is min and U(n) is max. Density of U(k) is beta (k, n � k + 1).

• If S
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C(r , s)/C(r + k, s + n � k) where C(r , s) = � (r + s)/(� (r)� (s)) is the constant in the beta (r , s) density.

• If X has mean vector µ and covariance matrix ⌃ then AX+ b has mean vector Aµ+ b and covariance matrix A⌃A

T .
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• The least squares linear predictor of Y based on the p⇥ 1 vector X is ˆ
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In the case p = 1 this is the equation of the regression line, with slope Cov(X ,Y )/Var(X ) = rSD(Y )/SD(X ) and intercept E(Y )� slopeE(X ).
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• If Y and X are multivariate normal then the formulas in the above two bullet points are the conditional expectation and conditional variance of Y given X.

• If Y and X are standard bivariate normal with correlation r , then Y = rX +
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• Under the multiple regression model Y = X� + ✏, the least squares estimate of � is ˆ� = (XT

X)�1
X

T

Y.


