Data 140 Final Exam Reference Sheet

A. Adhikari, A. Strang

name and parameters values mass function or density | cdf F or survival function expectation | variance mgf M(t)
Uniform m<k<n|1l/(n—m+1) (m—+n)/2 ((h—m+1)Y?-1)/12
Bernoulli (p) 0,1 pPL=p Po=4q P pq q + pe'
Binomial (n, p) 0<k<n (Z)pkq"*k np npq (q+ pe’)”
Poisson () k>0 e " uf/k! I 1 exp(u(ef — 1))
Geometric (p) k>1 dIp P(X > k) =q* 1/p q/p*
“Negative binomial” (r, p) k>r (fj)p’flqk”p r/p rq/p’
Geometric (p) k>0 ap P(X > k) = g"*1 q/p q/p°
Negative binomial (r, p) k>0 (kﬁil)p’_lqkp rq/p rq/p*
Hypergeometric (N, G, n) 0<g<n (g) B/M n& n& . B. HN=n
Uniform x € (a, b) 1/(b— a) F(x)=(x—a)/(b—a) (a+b)/2 (b—a)?/12
Beta (r, s) x €(0,1) rr((r;ﬁ(sz)x”l(l —x)1 by uniform order statistics for integer r and s | r/(r+s) rs/((r+s)*(r+s+1))
Exponential (A) = Gamma (1,)) | x>0 e M F(x)=1—e ™ /X /22
Gamma (r, A) x>0 %x"le_)‘x by the Poisson process, for integer r r/A r/2? A/ (A=1), t< A
Chi-square (n) x>0 same as gamma (n/2,1/2) n 2n
Normal (0, 1) x €R o(x) = %ef%xz cdf: @(x) 0 1 exp(t?/2)
Normal (i, o%) x €R Lo((x — p)/o) cdf: &((x — p)/o) 1 o°
Rayleigh x>0 xe 2¥ F(x)=1- e ¥ /2 (4—m)/2
Cauchy x €R 1/r(1+x%) F(x) = 3 + Zarctan(x)

o If X1, Xz, ..., X, are i.i.d. with variance o2, then S* = —1-3"" (X; — X)? is an unbiased estimator of o but 6> = £ "7 (X; — X)? is not.

n—1

n

e For r > 0, the integral '(r) = [ x""'e™*dx satisfies ['(r +1) = r[(r). So I'(r) = (r — 1)V if r is an integer. Also, '(1/2) = /7.

e If Z; and Z, are i.i.d. standard normal then \/Z2? + Z? is Rayleigh.

e The kth order statistic Uy is kth smallest of Ui, Us, .

e If Z is standard normal then E(|Z]) = \/2/7

.., Uy iiid. uniform (0, 1), so U3y is min and U, is max. Density of U, is beta (k, n — k + 1).

e If S, is the number of heads in n tosses of a coin whose probability of heads was chosen according to the beta (r, s) distribution, then the distribution of S, is beta-binomial
(r,s,n) with P(S, = k) = (})C(r,s)/C(r+ k,s+ n— k) where C(r,s) = I(r+5)/(I'(r)[(s)) is the constant in the beta (r,s) density.

e If X has mean vector p and covariance matrix X then AX + b has mean vector Ap + b and covariance matrix AXAT .

e If X has the multivariate normal distribution with mean vector p and covariance matrix X, then X has density f(x) = (

V27)ny /det(X)

1

exp(—3(x—p) T (x—p))

e The least squares linear predictor of Y based on the p x 1 vector X is Yy = bT(Xf/LX) + py where b = Z;l}:x,y. Here the ith element of the p x 1 vector Xx y is Cov(X;, Y).
In the case p =1 this is the equation of the regression line, with slope Cov(X, Y)/Var(X) = rSD(Y)/SD(X) and intercept E(Y) — slopeE(X).

o If W =Y — Y is the error in the least squares linear prediction, then E(W) =0 and Var(W) = Var(Y) — ZyxEx Zxy. In the case p = 1, Var(W) = (1 — r?)Var(Y).

e If Y and X are multivariate normal then the formulas in the above two bullet points are the conditional expectation and conditional variance of Y given X.

e If Y and X are standard bivariate normal with correlation r, then Y = rX + /1 — r2Z for some standard normal Z independent of X.

e Under the multiple regression model Y = X3 + €, the least squares estimate of 8 is 3 = (XTX)71XTY.




