• Course Home
  • Authors and License
  • To the Student
  • Search
  • Chapter 1: Fundamentals
    • 1.1 Outcome Space and Events
    • 1.2 Equally Likely Outcomes
    • 1.3 Collisions in Hashing
    • 1.4 The Birthday Problem
    • 1.5 An Exponential Approximation
  • Chapter 2: Calculating Chances
    • 2.1 Addition
    • 2.2 Examples
    • 2.3 Multiplication
    • 2.4 More Examples
    • 2.5 Updating Probabilities
  • Chapter 3: Random Variables
    • 3.1 Functions on an Outcome Space
    • 3.2 Distributions
    • 3.3 Equality
  • Chapter 4: Relations Between Variables
    • 4.1 Joint Distributions
    • 4.2 Marginal Distributions
    • 4.3 Conditional Distributions
    • 4.4 Updating Distributions
    • 4.5 Dependence and Independence
  • Chapter 5: Collections of Events
    • 5.1 Bounding the Chance of a Union
    • 5.2 Inclusion-Exclusion
    • 5.3 The Matching Problem
    • 5.4 Sampling Without Replacement
  • Review Problem Set 1
  • Chapter 6: Random Counts
    • 6.1 The Binomial Distribution
    • 6.2 Examples
    • 6.3 The Hypergeometric Distribution
    • 6.4 Odds Ratios
    • 6.5 The Law of Small Numbers
  • Chapter 7: Poissonization
    • 7.1 Poissonizing the Binomial
    • 7.2 Poissonizing the Multinomial
  • Chapter 8: Expectation
    • 8.1 Definition
    • 8.2 Additivity
    • 8.3 Expectations of Functions
  • Review Problems: Set 2
  • Chapter 9: Conditioning, Revisited
    • 9.1 Probability by Conditioning
    • 9.2 Expectation by Conditioning
    • 9.3 Expected Waiting Times
  • Chapter 10: Markov Chains
    • 10.1 Transitions
    • 10.2 Deconstructing Chains
    • 10.3 Long Run Behavior
    • 10.4 Examples
  • Chapter 11: Reversing Markov Chains
    • 11.1 Detailed Balance
    • 11.2 Reversibility
    • 11.3 Code Breaking
    • 11.4 Markov Chain Monte Carlo
  • Review Set on Conditioning and Markov Chains
  • Chapter 12: Standard Deviation
    • 12.1 Definition
    • 12.2 Prediction and Estimation
    • 12.3 Tail Bounds
    • 12.4 Heavy Tails
  • Chapter 13: Variance Via Covariance
    • 13.1 Properties of Covariance
    • 13.2 Sums of IID Samples
    • 13.3 Sums of Simple Random Samples
    • 13.4 Finite Population Correction
  • Chapter 14: The Central Limit Theorem
    • 14.1 Exact Distribution
    • 14.2 PGFs in NumPy
    • 14.3 Central Limit Theorem
    • 14.4 The Sample Mean
    • 14.5 Confidence Intervals
  • Chapter 15: Continuous Distributions
    • 15.1 Density and CDF
    • 15.2 The Meaning of Density
    • 15.3 Expectation
    • 15.4 Exponential Distribution
    • 15.5 Calculus in SymPy
  • Review Problems: Set 3
  • Chapter 16: Transformations
    • 16.1 Linear Transformations
    • 16.2 Monotone Functions
    • 16.3 Two-to-One Functions
  • Chapter 17: Joint Densities
    • 17.1 Probabilities and Expectations
    • 17.2 Independence
    • 17.3 Marginal and Conditional Densities
    • 17.4 Beta Densities with Integer Parameters
  • Chapter 18: The Normal and Gamma Families
    • 18.1 Standard Normal: The Basics
    • 18.2 Sums of Independent Normal Variables
    • 18.3 The Gamma Family
    • 18.4 Chi-Squared Distributions
  • Review Problems: Set 4
  • Chapter 19: Distributions of Sums
    • 19.1 The Convolution Formula
    • 19.2 Moment Generating Functions
    • 19.3 MGFs, the Normal, and the CLT
    • 19.4 Chernoff Bound
  • Chapter 20: Approaches to Estimation
    • 20.1 Maximum Likelihood
    • 20.2 Prior and Posterior
    • 20.3 Independence, Revisited
  • Chapter 21: The Beta and the Binomial
    • 21.1 Updating and Prediction
    • 21.2 The Beta-Binomial Distribution
    • 21.3 Long Run Proportion of Heads
  • Chapter 22: Prediction
    • 22.1 Conditional Expectation As a Projection
    • 22.2 Variance by Conditioning
    • 22.3 Examples
    • 22.4 Least Squares Predictor
  • Chapter 23: Jointly Normal Random Variables
    • 23.1 Random Vectors
    • 23.2 Multivariate Normal Distribution
    • 23.3 Linear Combinations
    • 23.4 Independence
  • Chapter 24: Simple Linear Regression
    • 24.1 Bivariate Normal Distribution
    • 24.2 Least Squares Linear Predictor
    • 24.3 Regression and the Bivariate Normal
    • 24.4 The Regression Equation
  • Chapter 25: Multiple Regression
    • 25.1 Bilinearity in Matrix Notation
    • 25.2 Best Linear Predictor
    • 25.3 Conditioning and the Multivariate Normal
    • 25.4 Multiple Regression
  • Further Review Exercises

Search

Previous Next